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1 Local Solutions for Linear, Semilinear, and Quasilinear
Scalar PDEs

1.1 Local solutions for linear, scalar PDEs

Last time, we were studying linear, scalar PDEs of the form

Aj∂ju︸ ︷︷ ︸
directional derivative

+bu = f.

The initial curves (or characteristics) of A were the solutions to the ODE

ẋ = A(x), x(0) = x0

Along the integral curves, the PDE looks like

d

dt
u(x(t)) + b(x(t))u(x(t)) = f(x(t)),

so solving the PDE is like solving two ODEs.
If we assume A ∈ C1, then x(t, x0) ∈ C1. We want these characteristics to locally

foliate Rn; that is, we want them to cover the domain. One issue: what if A(x0) = 0?
Then x(t) = x0 for all t!

Example 1.1. Consider A that gives

ẋ1 = x2, ẋ2 = −x1.

Then the integral curves will be circles, so A(0) = 0.

The fix for this problem is to assume that A(x) 6= 0 for any x.
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Now suppose we have initial data u(x) = u0(x) on a curve Σ. If we start at an x0 on
the curve or surface Σ, we can look at the integral curve starting from x0.

From x0 ∈ Σ and t ∈ [−ε, ε], we can construct x(t, x0). Once we know u(x0), we can solve
the second ODE to get u(x(t, x0)), where x(t, x0) ∈ C1. So by our ODE theorem, we will
get u ∈ C1.

What are the bad cases?

• The integral curve may intersect Σ twice.

We might still get a local solution if we look at a small enough neighborhood of x0.
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• A may be tangent to Σ, and re-intersection can happen arbitrarily close.

Even if re-intersection is not arbitrarily close, there may be a more subtle issue with
the solution not being C1.

Here is how we avoid this issue.

Definition 1.1. We say that Σ is noncharacteristic for our PDE if A · N 6= 0 on Σ,
where N is the normal to Σ.

This says that A is not tangent to Σ at any point.

Theorem 1.1. Assume A, b, f,Σ, u0 ∈ C1, and suppose that Σ is noncharacteristic. Then
the equation

Aj∂ju + bu = f

with initial data u0 has a unique C1 local solution.

Proof. Step 1: For x0 ∈ Σ, solve for the characteristic Σ× [−ε, ε] 3 (x0, t) 7→ x(x0, t).
Step 2: Solve the ODE

d

dt
u(x(t)) + b(x(t))u(x(t)) = f(x(t))
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along the characteristics to get u(x(t, x0)), which is C1 in t and x0.
Step 3: Show that our characteristics foliate a neighborhood of Σ. What does this

mean? Looking at the map (x0, t) 7→ x(t, x0). We want this to be a local diffeomorphism,
i.e. a C1 map with a C1 inverse. Recall the following theorem from real analysis:

Theorem 1.2 (Local inversion theorem). Let F : Rn → Rn ∈ C1. If det dF (x0) 6= 0, then
F is a local diffeomorphism.

We would like to change coordinates so that Σ is a hyperplane.

Since Σ is C1, locally, Σ is the graph of a C1 function, xn = f(x′), x′ = (x1, . . . , xn−1)
with f ∈ C1. The new coordinates are y = (x′, xn − f(x′)). To check that this is a local
diffeomorphism, the theorem says we should look at

∂y

∂x
=

[
∂y′

∂x′
∂y′

∂xn
∂yn
∂x′

∂yn
∂xn

]
=

[
In−1 0
−df 1

]
,

which has determinant 1. Check that the coefficients remain C1 after changing coordinates.
In the new coordinates, Σ = {yn = 0}, y′ = (y1, . . . , yn−1) are coordinate on Σ, and we

are looking at the equation ẏ = A(y). Here, y = y(t, y′0). Look at ∂y
∂(y′0,t)

at t = 0. When

t = 0, y(y′0, 0) = (y′0, 0). So

∂(y′, yn)

∂(y′0, t)
=

[
∂y′

∂y′0

∂y′

∂t
∂yn
∂y′0

∂yn
∂t

]
=

[
In−1 0
A′ An

]
.

So det ∂y
∂(y′0,t)

= An 6= 0, precisely from our noncharacteristic surface property.

Remark 1.1. In the above proof, we reduced the situation to the case where Σ is a
hyperplane. Let’s use this to model the noncharacteristic case. Using coordinates (x, t),
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we can write Σ = {t = 0}.

Our equation looks like

At · ∂tu + A1 · ∂1u + · · ·+ An · ∂nu + bu = f.

where At 6= 0 by the noncharacteristic assumption. So we may divide by it and just look
at equations of the form

∂tu + A1 · ∂1u + · · ·+ An · ∂nu + bu = f.

This is only a local modelling, however, not necessarily a global one.

1.2 Semilinear PDEs

Now we move on to solving semilinear PDEs, of the form{
Aj(x)∂ju + b(u, x) = 0

u|Σ = 0

The characteristics are still ẋ = A(x) (so x = x(x0, t)), and our noncharacteristic initial
surface condition is still A ·N 6= 0 on Σ. The evolution along the characteristics is

d

dt
u(x(x0, t)) = −b(u(x(x0, t)), x(x0, t)).

The difference from before is that our second equation is a nonlinear ODE, so it may
have finite time blow-up. So local well-posedness is identical to the linear case, but global
well-posedness may fail because the second ODE blows up.
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1.3 Quasilinear PDEs

Now we look at the quasilinear problem{
Aj(x, u)∂j(u) + b(x, u) = 0

u|Σ = u0.

Our characteristics now look like ẋ = A(x, u). We cannot solve this because we do not
know what u is outside of Σ. The second equation would read u̇ = b(x, u). These two
ODEs would be true if we already had a solution, but we cannot solve them. What if we
put these two equations together into a system?{

ẋ = A(x, u)

u̇ = b(x, u)

We call this a characteristic system.
The initial data for the characteristic system is{

x(0) = x0 ∈ Σ

u(0) = u(x(0)) = u0(x0),

where the second initial condition depends on u0. In this situation, our noncharacteristic
Σ condition is

A(x0, u0(x0)) ·N 6= 0.

Our local well-posedness theorem is identical: If Σ is noncharacteristic and u0 ∈ C1,
then there exists a unique local C1 solution u.

The key difference is that the characteristics may now intersect. In the semilinear case,
suppose two characteristics were to intersect. Then the characteristic equation would have
the same data, so the two characteristics must be the same.

6



In the quasilinear case, the initial data is both the location and the value of the function.
Intersection means that x(t) = y(t), but it does not necessarily mean u(x(t)) = u(y(t)).
So we cannot say that the two characteristics must be the same.

Next time, we will talk about what might make characteristics intersect and what to do
about it.
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